快讯

当前位置/ 首页/ 综合快讯/快讯/ 正文

arccotx的导数是什么(arctanx的导数是什么)

导读 目前是有很多朋友们对于arctanx的导数是什么这个信息比较感兴趣,那么小编也是收集了一些arctanx的导数是什么相关的信息来分享给大家,希望

目前是有很多朋友们对于arctanx的导数是什么这个信息比较感兴趣,那么小编也是收集了一些arctanx的导数是什么相关的信息来分享给大家,希望你会喜欢哦。

arctanx的导数是1/1+x²,设y=arctanx,则x=tany,因为arctanx′=1/tany′,且tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y,则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²。

arctanx(即Arctangent)指反正切函数。反函数与原函数关于y=x的对称点的导数互为倒数。设原函数为y=f(x),则其反函数在y点的导数与f'(x)互为倒数(即原函数,前提要f'(x)存在且不为0)。

反正切函数arctanx的导数

(arctanx)'=1/(1+x^2)

函数y=tanx,(x不等于kπ+π/2,k∈Z)的反函数,记作x=arctany,叫做反正切函数。其值域为(-π/2,π/2)。反正切函数是反三角函数的一种。

反正切函数arctanx的求导过程

设y=arctanx

则x=tany

因为arctanx′=1/tany′

且tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y

则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²。

所以arctanx的导数是1/1+x²。

其他常用公式

(arcsinx)'=1/√(1-x^2)

(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)

三角函数求导公式

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

反函数求导法则

如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且

′=1f′(y)或dydx=1dxdy

′=1f′(y)或dydx=1dxdy

这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。

例:设x=siny,y∈x=sin⁡y,y∈为直接导数,则y=arcsinxy=arcsin⁡x是它的反函数,求反函数的导数.

解:函数x=sinyx=sin⁡y在区间内单调可导,f′(y)=cosy≠0f′(y)=cos⁡y≠0

因此,由公式得

(arcsinx)′=1(siny)′

(arcsin⁡x)′=1(sin⁡y)′

=1cosy=11−sin2y−−−−−−−−√=11−x2−−−−−√

=1cos⁡y=11−sin2⁡y=11−x2

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!