快讯

当前位置/ 首页/ 综合快讯/快讯/ 正文

数学重心的性质(重心的性质)

导读 目前是有很多朋友们对于重心的性质这个信息比较感兴趣,那么小编也是收集了一些重心的性质相关的信息来分享给大家,希望你会喜欢哦。重心是

目前是有很多朋友们对于重心的性质这个信息比较感兴趣,那么小编也是收集了一些重心的性质相关的信息来分享给大家,希望你会喜欢哦。

重心是物体重力的作用点,对于质量均匀、形状规则的物体来说,重心就在它的几何中心。对于质量不均匀、形状不规则的物体来说,也可用悬挂法确定整体的重心位置。重心可在物体上,也可在物体外,比如游泳圈。重心是可以移动的。

重心确定方法

‎对于均质物体,如在几何形体上具有对称面、对称轴或对称中心,则该物体的重心或形心必在此对称面、对称轴或对称中心上。‎

1.组合法

工程中有些形体虽然比较复杂,但往往是由一些简单形体的组合,这些形体的重心通常是已知的或易求的。

2.负面积法

如果在规则形体上切去一部分,例如钻一个孔等,则在求这类形体的重心时,可以认为原形体是完整的,只是把切去的部分视为负值(负体积或负面积)。

3.实验法(平衡法)

‎如物体的形状不是由基本形体组成,过于复杂或质量分布不均匀,其重心常用实验方法来确定。 主要包括悬挂法和称重法。‎

扩展

外心的性质

1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等。

重心坐标公式

平面直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3

空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z2)/3

重心坐标公式的推导公式

设三点为A(x1.y1),B(x2,y2),C(x3,y3)

重心坐标(xm,ym)

考虑xm,任取两点(不妨设为A和B),则重心在以AB为底的中线上.

AB中点横坐标为(x1+x2)/2

重心在中线距AB中点1/3处

故重心横坐标为xm=1/3*(x3-(x1+x2)/2)+(x1+x2)/2=(x1+x2+x3)/3

同理,ym=(y1+y2+y3)/3

其它图形重心

注:下面的几何体都是均匀的,线段指细棒,平面图形指薄板。

三角形的重心就是三边中线的交点。线段的重心就是线段的中点。

平行四边形的重心就是其两条对角线的交点,也是两对对边中点连线的交点。

平行六面体的重心就是其四条对角线的交点,也是六对对棱中点连线的交点,也是四对对面重心连线的交点。

圆的重心就是圆心,球的重心就是球心。

锥体的重心是顶点与底面重心连线的四等分点上最接近底面的一个。

四面体的重心同时也是每个定点与对面重心连线的交点,也是每条棱与对棱中点确定平面的交点。

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!