四次函数的图像是怎样的(四次函数)
导读 从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,...
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。
接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。
这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。
他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。
同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。
免责声明:本文由用户上传,如有侵权请联系删除!