分离常数法的典型例题(分离常数法)
导读 所谓分离常数就是把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分...
所谓分离常数就是把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子。
这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子 所以就有了解法1:因为含有的未知数是分母是2x,分子是-x。
所以要让它们成倍数关系,就得给分子乘以一个常数-1/2,这样-1/2·(2x+5)=-x-5/2,然后配凑常数相等即可 ∴y=(1-x)/(2x+5)=((-1/2)·(2x+5)+7/2)/(2x+5)=((-1/2)·(2x+5)/(2x+5)+(7/2)/(2x+5)=-1/2+(7/2)/(2x+5) 解法2:令分母2x+5=t。
则t=1/2·(t-5) 代入分子,y=(1-1/2·(t-5))/t=(-t/2+7/2)/t=-1/2+(7/2)/t 然后把t代换回来,有y=-1/2+(7/2)/(2x+5)。
免责声明:本文由用户上传,如有侵权请联系删除!